Source code for TTS.tts.models.vits

import math
import os
from dataclasses import dataclass, field, replace
from itertools import chain
from typing import Dict, List, Tuple, Union

import numpy as np
import torch
import torch.distributed as dist
import torchaudio
from coqpit import Coqpit
from librosa.filters import mel as librosa_mel_fn
from torch import nn
from torch.cuda.amp.autocast_mode import autocast
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.data.sampler import WeightedRandomSampler
from trainer.torch import DistributedSampler, DistributedSamplerWrapper
from trainer.trainer_utils import get_optimizer, get_scheduler

from TTS.tts.configs.shared_configs import CharactersConfig
from TTS.tts.datasets.dataset import TTSDataset, _parse_sample
from TTS.tts.layers.glow_tts.duration_predictor import DurationPredictor
from TTS.tts.layers.vits.discriminator import VitsDiscriminator
from TTS.tts.layers.vits.networks import PosteriorEncoder, ResidualCouplingBlocks, TextEncoder
from TTS.tts.layers.vits.stochastic_duration_predictor import StochasticDurationPredictor
from TTS.tts.models.base_tts import BaseTTS
from TTS.tts.utils.fairseq import rehash_fairseq_vits_checkpoint
from TTS.tts.utils.helpers import generate_path, maximum_path, rand_segments, segment, sequence_mask
from TTS.tts.utils.languages import LanguageManager
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.characters import BaseCharacters, BaseVocabulary, _characters, _pad, _phonemes, _punctuations
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.tts.utils.visual import plot_alignment
from TTS.utils.io import load_fsspec
from TTS.utils.samplers import BucketBatchSampler
from TTS.vocoder.models.hifigan_generator import HifiganGenerator
from TTS.vocoder.utils.generic_utils import plot_results

##############################
# IO / Feature extraction
##############################

# pylint: disable=global-statement
hann_window = {}
mel_basis = {}


@torch.no_grad()
def weights_reset(m: nn.Module):
    # check if the current module has reset_parameters and if it is reset the weight
    reset_parameters = getattr(m, "reset_parameters", None)
    if callable(reset_parameters):
        m.reset_parameters()


def get_module_weights_sum(mdl: nn.Module):
    dict_sums = {}
    for name, w in mdl.named_parameters():
        if "weight" in name:
            value = w.data.sum().item()
            dict_sums[name] = value
    return dict_sums


def load_audio(file_path):
    """Load the audio file normalized in [-1, 1]

    Return Shapes:
        - x: :math:`[1, T]`
    """
    x, sr = torchaudio.load(file_path)
    assert (x > 1).sum() + (x < -1).sum() == 0
    return x, sr


def _amp_to_db(x, C=1, clip_val=1e-5):
    return torch.log(torch.clamp(x, min=clip_val) * C)


def _db_to_amp(x, C=1):
    return torch.exp(x) / C


def amp_to_db(magnitudes):
    output = _amp_to_db(magnitudes)
    return output


def db_to_amp(magnitudes):
    output = _db_to_amp(magnitudes)
    return output


def wav_to_spec(y, n_fft, hop_length, win_length, center=False):
    """
    Args Shapes:
        - y : :math:`[B, 1, T]`

    Return Shapes:
        - spec : :math:`[B,C,T]`
    """
    y = y.squeeze(1)

    if torch.min(y) < -1.0:
        print("min value is ", torch.min(y))
    if torch.max(y) > 1.0:
        print("max value is ", torch.max(y))

    global hann_window
    dtype_device = str(y.dtype) + "_" + str(y.device)
    wnsize_dtype_device = str(win_length) + "_" + dtype_device
    if wnsize_dtype_device not in hann_window:
        hann_window[wnsize_dtype_device] = torch.hann_window(win_length).to(dtype=y.dtype, device=y.device)

    y = torch.nn.functional.pad(
        y.unsqueeze(1),
        (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)),
        mode="reflect",
    )
    y = y.squeeze(1)

    spec = torch.stft(
        y,
        n_fft,
        hop_length=hop_length,
        win_length=win_length,
        window=hann_window[wnsize_dtype_device],
        center=center,
        pad_mode="reflect",
        normalized=False,
        onesided=True,
        return_complex=False,
    )

    spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
    return spec


def spec_to_mel(spec, n_fft, num_mels, sample_rate, fmin, fmax):
    """
    Args Shapes:
        - spec : :math:`[B,C,T]`

    Return Shapes:
        - mel : :math:`[B,C,T]`
    """
    global mel_basis
    dtype_device = str(spec.dtype) + "_" + str(spec.device)
    fmax_dtype_device = str(fmax) + "_" + dtype_device
    if fmax_dtype_device not in mel_basis:
        mel = librosa_mel_fn(sr=sample_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
        mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
    mel = torch.matmul(mel_basis[fmax_dtype_device], spec)
    mel = amp_to_db(mel)
    return mel


def wav_to_mel(y, n_fft, num_mels, sample_rate, hop_length, win_length, fmin, fmax, center=False):
    """
    Args Shapes:
        - y : :math:`[B, 1, T]`

    Return Shapes:
        - spec : :math:`[B,C,T]`
    """
    y = y.squeeze(1)

    if torch.min(y) < -1.0:
        print("min value is ", torch.min(y))
    if torch.max(y) > 1.0:
        print("max value is ", torch.max(y))

    global mel_basis, hann_window
    dtype_device = str(y.dtype) + "_" + str(y.device)
    fmax_dtype_device = str(fmax) + "_" + dtype_device
    wnsize_dtype_device = str(win_length) + "_" + dtype_device
    if fmax_dtype_device not in mel_basis:
        mel = librosa_mel_fn(sr=sample_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
        mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
    if wnsize_dtype_device not in hann_window:
        hann_window[wnsize_dtype_device] = torch.hann_window(win_length).to(dtype=y.dtype, device=y.device)

    y = torch.nn.functional.pad(
        y.unsqueeze(1),
        (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)),
        mode="reflect",
    )
    y = y.squeeze(1)

    spec = torch.stft(
        y,
        n_fft,
        hop_length=hop_length,
        win_length=win_length,
        window=hann_window[wnsize_dtype_device],
        center=center,
        pad_mode="reflect",
        normalized=False,
        onesided=True,
        return_complex=False,
    )

    spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
    spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
    spec = amp_to_db(spec)
    return spec


#############################
# CONFIGS
#############################


@dataclass
class VitsAudioConfig(Coqpit):
    fft_size: int = 1024
    sample_rate: int = 22050
    win_length: int = 1024
    hop_length: int = 256
    num_mels: int = 80
    mel_fmin: int = 0
    mel_fmax: int = None


##############################
# DATASET
##############################


def get_attribute_balancer_weights(items: list, attr_name: str, multi_dict: dict = None):
    """Create inverse frequency weights for balancing the dataset.
    Use `multi_dict` to scale relative weights."""
    attr_names_samples = np.array([item[attr_name] for item in items])
    unique_attr_names = np.unique(attr_names_samples).tolist()
    attr_idx = [unique_attr_names.index(l) for l in attr_names_samples]
    attr_count = np.array([len(np.where(attr_names_samples == l)[0]) for l in unique_attr_names])
    weight_attr = 1.0 / attr_count
    dataset_samples_weight = np.array([weight_attr[l] for l in attr_idx])
    dataset_samples_weight = dataset_samples_weight / np.linalg.norm(dataset_samples_weight)
    if multi_dict is not None:
        # check if all keys are in the multi_dict
        for k in multi_dict:
            assert k in unique_attr_names, f"{k} not in {unique_attr_names}"
        # scale weights
        multiplier_samples = np.array([multi_dict.get(item[attr_name], 1.0) for item in items])
        dataset_samples_weight *= multiplier_samples
    return (
        torch.from_numpy(dataset_samples_weight).float(),
        unique_attr_names,
        np.unique(dataset_samples_weight).tolist(),
    )


class VitsDataset(TTSDataset):
    def __init__(self, model_args, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.pad_id = self.tokenizer.characters.pad_id
        self.model_args = model_args

    def __getitem__(self, idx):
        item = self.samples[idx]
        raw_text = item["text"]

        wav, _ = load_audio(item["audio_file"])
        if self.model_args.encoder_sample_rate is not None:
            if wav.size(1) % self.model_args.encoder_sample_rate != 0:
                wav = wav[:, : -int(wav.size(1) % self.model_args.encoder_sample_rate)]

        wav_filename = os.path.basename(item["audio_file"])

        token_ids = self.get_token_ids(idx, item["text"])

        # after phonemization the text length may change
        # this is a shameful 🤭 hack to prevent longer phonemes
        # TODO: find a better fix
        if len(token_ids) > self.max_text_len or wav.shape[1] < self.min_audio_len:
            self.rescue_item_idx += 1
            return self.__getitem__(self.rescue_item_idx)

        return {
            "raw_text": raw_text,
            "token_ids": token_ids,
            "token_len": len(token_ids),
            "wav": wav,
            "wav_file": wav_filename,
            "speaker_name": item["speaker_name"],
            "language_name": item["language"],
            "audio_unique_name": item["audio_unique_name"],
        }

    @property
    def lengths(self):
        lens = []
        for item in self.samples:
            _, wav_file, *_ = _parse_sample(item)
            audio_len = os.path.getsize(wav_file) / 16 * 8  # assuming 16bit audio
            lens.append(audio_len)
        return lens

    def collate_fn(self, batch):
        """
        Return Shapes:
            - tokens: :math:`[B, T]`
            - token_lens :math:`[B]`
            - token_rel_lens :math:`[B]`
            - waveform: :math:`[B, 1, T]`
            - waveform_lens: :math:`[B]`
            - waveform_rel_lens: :math:`[B]`
            - speaker_names: :math:`[B]`
            - language_names: :math:`[B]`
            - audiofile_paths: :math:`[B]`
            - raw_texts: :math:`[B]`
            - audio_unique_names: :math:`[B]`
        """
        # convert list of dicts to dict of lists
        B = len(batch)
        batch = {k: [dic[k] for dic in batch] for k in batch[0]}

        _, ids_sorted_decreasing = torch.sort(
            torch.LongTensor([x.size(1) for x in batch["wav"]]), dim=0, descending=True
        )

        max_text_len = max([len(x) for x in batch["token_ids"]])
        token_lens = torch.LongTensor(batch["token_len"])
        token_rel_lens = token_lens / token_lens.max()

        wav_lens = [w.shape[1] for w in batch["wav"]]
        wav_lens = torch.LongTensor(wav_lens)
        wav_lens_max = torch.max(wav_lens)
        wav_rel_lens = wav_lens / wav_lens_max

        token_padded = torch.LongTensor(B, max_text_len)
        wav_padded = torch.FloatTensor(B, 1, wav_lens_max)
        token_padded = token_padded.zero_() + self.pad_id
        wav_padded = wav_padded.zero_() + self.pad_id
        for i in range(len(ids_sorted_decreasing)):
            token_ids = batch["token_ids"][i]
            token_padded[i, : batch["token_len"][i]] = torch.LongTensor(token_ids)

            wav = batch["wav"][i]
            wav_padded[i, :, : wav.size(1)] = torch.FloatTensor(wav)

        return {
            "tokens": token_padded,
            "token_lens": token_lens,
            "token_rel_lens": token_rel_lens,
            "waveform": wav_padded,  # (B x T)
            "waveform_lens": wav_lens,  # (B)
            "waveform_rel_lens": wav_rel_lens,
            "speaker_names": batch["speaker_name"],
            "language_names": batch["language_name"],
            "audio_files": batch["wav_file"],
            "raw_text": batch["raw_text"],
            "audio_unique_names": batch["audio_unique_name"],
        }


##############################
# MODEL DEFINITION
##############################


[docs] @dataclass class VitsArgs(Coqpit): """VITS model arguments. Args: num_chars (int): Number of characters in the vocabulary. Defaults to 100. out_channels (int): Number of output channels of the decoder. Defaults to 513. spec_segment_size (int): Decoder input segment size. Defaults to 32 `(32 * hoplength = waveform length)`. hidden_channels (int): Number of hidden channels of the model. Defaults to 192. hidden_channels_ffn_text_encoder (int): Number of hidden channels of the feed-forward layers of the text encoder transformer. Defaults to 256. num_heads_text_encoder (int): Number of attention heads of the text encoder transformer. Defaults to 2. num_layers_text_encoder (int): Number of transformer layers in the text encoder. Defaults to 6. kernel_size_text_encoder (int): Kernel size of the text encoder transformer FFN layers. Defaults to 3. dropout_p_text_encoder (float): Dropout rate of the text encoder. Defaults to 0.1. dropout_p_duration_predictor (float): Dropout rate of the duration predictor. Defaults to 0.1. kernel_size_posterior_encoder (int): Kernel size of the posterior encoder's WaveNet layers. Defaults to 5. dilatation_posterior_encoder (int): Dilation rate of the posterior encoder's WaveNet layers. Defaults to 1. num_layers_posterior_encoder (int): Number of posterior encoder's WaveNet layers. Defaults to 16. kernel_size_flow (int): Kernel size of the Residual Coupling layers of the flow network. Defaults to 5. dilatation_flow (int): Dilation rate of the Residual Coupling WaveNet layers of the flow network. Defaults to 1. num_layers_flow (int): Number of Residual Coupling WaveNet layers of the flow network. Defaults to 6. resblock_type_decoder (str): Type of the residual block in the decoder network. Defaults to "1". resblock_kernel_sizes_decoder (List[int]): Kernel sizes of the residual blocks in the decoder network. Defaults to `[3, 7, 11]`. resblock_dilation_sizes_decoder (List[List[int]]): Dilation sizes of the residual blocks in the decoder network. Defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`. upsample_rates_decoder (List[int]): Upsampling rates for each concecutive upsampling layer in the decoder network. The multiply of these values must be equal to the kop length used for computing spectrograms. Defaults to `[8, 8, 2, 2]`. upsample_initial_channel_decoder (int): Number of hidden channels of the first upsampling convolution layer of the decoder network. Defaults to 512. upsample_kernel_sizes_decoder (List[int]): Kernel sizes for each upsampling layer of the decoder network. Defaults to `[16, 16, 4, 4]`. periods_multi_period_discriminator (List[int]): Periods values for Vits Multi-Period Discriminator. Defaults to `[2, 3, 5, 7, 11]`. use_sdp (bool): Use Stochastic Duration Predictor. Defaults to True. noise_scale (float): Noise scale used for the sample noise tensor in training. Defaults to 1.0. inference_noise_scale (float): Noise scale used for the sample noise tensor in inference. Defaults to 0.667. length_scale (float): Scale factor for the predicted duration values. Smaller values result faster speech. Defaults to 1. noise_scale_dp (float): Noise scale used by the Stochastic Duration Predictor sample noise in training. Defaults to 1.0. inference_noise_scale_dp (float): Noise scale for the Stochastic Duration Predictor in inference. Defaults to 0.8. max_inference_len (int): Maximum inference length to limit the memory use. Defaults to None. init_discriminator (bool): Initialize the disciminator network if set True. Set False for inference. Defaults to True. use_spectral_norm_disriminator (bool): Use spectral normalization over weight norm in the discriminator. Defaults to False. use_speaker_embedding (bool): Enable/Disable speaker embedding for multi-speaker models. Defaults to False. num_speakers (int): Number of speakers for the speaker embedding layer. Defaults to 0. speakers_file (str): Path to the speaker mapping file for the Speaker Manager. Defaults to None. speaker_embedding_channels (int): Number of speaker embedding channels. Defaults to 256. use_d_vector_file (bool): Enable/Disable the use of d-vectors for multi-speaker training. Defaults to False. d_vector_file (List[str]): List of paths to the files including pre-computed speaker embeddings. Defaults to None. d_vector_dim (int): Number of d-vector channels. Defaults to 0. detach_dp_input (bool): Detach duration predictor's input from the network for stopping the gradients. Defaults to True. use_language_embedding (bool): Enable/Disable language embedding for multilingual models. Defaults to False. embedded_language_dim (int): Number of language embedding channels. Defaults to 4. num_languages (int): Number of languages for the language embedding layer. Defaults to 0. language_ids_file (str): Path to the language mapping file for the Language Manager. Defaults to None. use_speaker_encoder_as_loss (bool): Enable/Disable Speaker Consistency Loss (SCL). Defaults to False. speaker_encoder_config_path (str): Path to the file speaker encoder config file, to use for SCL. Defaults to "". speaker_encoder_model_path (str): Path to the file speaker encoder checkpoint file, to use for SCL. Defaults to "". condition_dp_on_speaker (bool): Condition the duration predictor on the speaker embedding. Defaults to True. freeze_encoder (bool): Freeze the encoder weigths during training. Defaults to False. freeze_DP (bool): Freeze the duration predictor weigths during training. Defaults to False. freeze_PE (bool): Freeze the posterior encoder weigths during training. Defaults to False. freeze_flow_encoder (bool): Freeze the flow encoder weigths during training. Defaults to False. freeze_waveform_decoder (bool): Freeze the waveform decoder weigths during training. Defaults to False. encoder_sample_rate (int): If not None this sample rate will be used for training the Posterior Encoder, flow, text_encoder and duration predictor. The decoder part (vocoder) will be trained with the `config.audio.sample_rate`. Defaults to None. interpolate_z (bool): If `encoder_sample_rate` not None and this parameter True the nearest interpolation will be used to upsampling the latent variable z with the sampling rate `encoder_sample_rate` to the `config.audio.sample_rate`. If it is False you will need to add extra `upsample_rates_decoder` to match the shape. Defaults to True. """ num_chars: int = 100 out_channels: int = 513 spec_segment_size: int = 32 hidden_channels: int = 192 hidden_channels_ffn_text_encoder: int = 768 num_heads_text_encoder: int = 2 num_layers_text_encoder: int = 6 kernel_size_text_encoder: int = 3 dropout_p_text_encoder: float = 0.1 dropout_p_duration_predictor: float = 0.5 kernel_size_posterior_encoder: int = 5 dilation_rate_posterior_encoder: int = 1 num_layers_posterior_encoder: int = 16 kernel_size_flow: int = 5 dilation_rate_flow: int = 1 num_layers_flow: int = 4 resblock_type_decoder: str = "1" resblock_kernel_sizes_decoder: List[int] = field(default_factory=lambda: [3, 7, 11]) resblock_dilation_sizes_decoder: List[List[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]) upsample_rates_decoder: List[int] = field(default_factory=lambda: [8, 8, 2, 2]) upsample_initial_channel_decoder: int = 512 upsample_kernel_sizes_decoder: List[int] = field(default_factory=lambda: [16, 16, 4, 4]) periods_multi_period_discriminator: List[int] = field(default_factory=lambda: [2, 3, 5, 7, 11]) use_sdp: bool = True noise_scale: float = 1.0 inference_noise_scale: float = 0.667 length_scale: float = 1 noise_scale_dp: float = 1.0 inference_noise_scale_dp: float = 1.0 max_inference_len: int = None init_discriminator: bool = True use_spectral_norm_disriminator: bool = False use_speaker_embedding: bool = False num_speakers: int = 0 speakers_file: str = None d_vector_file: List[str] = None speaker_embedding_channels: int = 256 use_d_vector_file: bool = False d_vector_dim: int = 0 detach_dp_input: bool = True use_language_embedding: bool = False embedded_language_dim: int = 4 num_languages: int = 0 language_ids_file: str = None use_speaker_encoder_as_loss: bool = False speaker_encoder_config_path: str = "" speaker_encoder_model_path: str = "" condition_dp_on_speaker: bool = True freeze_encoder: bool = False freeze_DP: bool = False freeze_PE: bool = False freeze_flow_decoder: bool = False freeze_waveform_decoder: bool = False encoder_sample_rate: int = None interpolate_z: bool = True reinit_DP: bool = False reinit_text_encoder: bool = False
[docs] class Vits(BaseTTS): """VITS TTS model Paper:: https://arxiv.org/pdf/2106.06103.pdf Paper Abstract:: Several recent end-to-end text-to-speech (TTS) models enabling single-stage training and parallel sampling have been proposed, but their sample quality does not match that of two-stage TTS systems. In this work, we present a parallel endto-end TTS method that generates more natural sounding audio than current two-stage models. Our method adopts variational inference augmented with normalizing flows and an adversarial training process, which improves the expressive power of generative modeling. We also propose a stochastic duration predictor to synthesize speech with diverse rhythms from input text. With the uncertainty modeling over latent variables and the stochastic duration predictor, our method expresses the natural one-to-many relationship in which a text input can be spoken in multiple ways with different pitches and rhythms. A subjective human evaluation (mean opinion score, or MOS) on the LJ Speech, a single speaker dataset, shows that our method outperforms the best publicly available TTS systems and achieves a MOS comparable to ground truth. Check :class:`TTS.tts.configs.vits_config.VitsConfig` for class arguments. Examples: >>> from TTS.tts.configs.vits_config import VitsConfig >>> from TTS.tts.models.vits import Vits >>> config = VitsConfig() >>> model = Vits(config) """ def __init__( self, config: Coqpit, ap: "AudioProcessor" = None, tokenizer: "TTSTokenizer" = None, speaker_manager: SpeakerManager = None, language_manager: LanguageManager = None, ): super().__init__(config, ap, tokenizer, speaker_manager, language_manager) self.init_multispeaker(config) self.init_multilingual(config) self.init_upsampling() self.length_scale = self.args.length_scale self.noise_scale = self.args.noise_scale self.inference_noise_scale = self.args.inference_noise_scale self.inference_noise_scale_dp = self.args.inference_noise_scale_dp self.noise_scale_dp = self.args.noise_scale_dp self.max_inference_len = self.args.max_inference_len self.spec_segment_size = self.args.spec_segment_size self.text_encoder = TextEncoder( self.args.num_chars, self.args.hidden_channels, self.args.hidden_channels, self.args.hidden_channels_ffn_text_encoder, self.args.num_heads_text_encoder, self.args.num_layers_text_encoder, self.args.kernel_size_text_encoder, self.args.dropout_p_text_encoder, language_emb_dim=self.embedded_language_dim, ) self.posterior_encoder = PosteriorEncoder( self.args.out_channels, self.args.hidden_channels, self.args.hidden_channels, kernel_size=self.args.kernel_size_posterior_encoder, dilation_rate=self.args.dilation_rate_posterior_encoder, num_layers=self.args.num_layers_posterior_encoder, cond_channels=self.embedded_speaker_dim, ) self.flow = ResidualCouplingBlocks( self.args.hidden_channels, self.args.hidden_channels, kernel_size=self.args.kernel_size_flow, dilation_rate=self.args.dilation_rate_flow, num_layers=self.args.num_layers_flow, cond_channels=self.embedded_speaker_dim, ) if self.args.use_sdp: self.duration_predictor = StochasticDurationPredictor( self.args.hidden_channels, 192, 3, self.args.dropout_p_duration_predictor, 4, cond_channels=self.embedded_speaker_dim if self.args.condition_dp_on_speaker else 0, language_emb_dim=self.embedded_language_dim, ) else: self.duration_predictor = DurationPredictor( self.args.hidden_channels, 256, 3, self.args.dropout_p_duration_predictor, cond_channels=self.embedded_speaker_dim, language_emb_dim=self.embedded_language_dim, ) self.waveform_decoder = HifiganGenerator( self.args.hidden_channels, 1, self.args.resblock_type_decoder, self.args.resblock_dilation_sizes_decoder, self.args.resblock_kernel_sizes_decoder, self.args.upsample_kernel_sizes_decoder, self.args.upsample_initial_channel_decoder, self.args.upsample_rates_decoder, inference_padding=0, cond_channels=self.embedded_speaker_dim, conv_pre_weight_norm=False, conv_post_weight_norm=False, conv_post_bias=False, ) if self.args.init_discriminator: self.disc = VitsDiscriminator( periods=self.args.periods_multi_period_discriminator, use_spectral_norm=self.args.use_spectral_norm_disriminator, ) @property def device(self): return next(self.parameters()).device
[docs] def init_multispeaker(self, config: Coqpit): """Initialize multi-speaker modules of a model. A model can be trained either with a speaker embedding layer or with external `d_vectors` computed from a speaker encoder model. You must provide a `speaker_manager` at initialization to set up the multi-speaker modules. Args: config (Coqpit): Model configuration. data (List, optional): Dataset items to infer number of speakers. Defaults to None. """ self.embedded_speaker_dim = 0 self.num_speakers = self.args.num_speakers self.audio_transform = None if self.speaker_manager: self.num_speakers = self.speaker_manager.num_speakers if self.args.use_speaker_embedding: self._init_speaker_embedding() if self.args.use_d_vector_file: self._init_d_vector() # TODO: make this a function if self.args.use_speaker_encoder_as_loss: if self.speaker_manager.encoder is None and ( not self.args.speaker_encoder_model_path or not self.args.speaker_encoder_config_path ): raise RuntimeError( " [!] To use the speaker consistency loss (SCL) you need to specify speaker_encoder_model_path and speaker_encoder_config_path !!" ) self.speaker_manager.encoder.eval() print(" > External Speaker Encoder Loaded !!") if ( hasattr(self.speaker_manager.encoder, "audio_config") and self.config.audio.sample_rate != self.speaker_manager.encoder.audio_config["sample_rate"] ): self.audio_transform = torchaudio.transforms.Resample( orig_freq=self.config.audio.sample_rate, new_freq=self.speaker_manager.encoder.audio_config["sample_rate"], )
def _init_speaker_embedding(self): # pylint: disable=attribute-defined-outside-init if self.num_speakers > 0: print(" > initialization of speaker-embedding layers.") self.embedded_speaker_dim = self.args.speaker_embedding_channels self.emb_g = nn.Embedding(self.num_speakers, self.embedded_speaker_dim) def _init_d_vector(self): # pylint: disable=attribute-defined-outside-init if hasattr(self, "emb_g"): raise ValueError("[!] Speaker embedding layer already initialized before d_vector settings.") self.embedded_speaker_dim = self.args.d_vector_dim
[docs] def init_multilingual(self, config: Coqpit): """Initialize multilingual modules of a model. Args: config (Coqpit): Model configuration. """ if self.args.language_ids_file is not None: self.language_manager = LanguageManager(language_ids_file_path=config.language_ids_file) if self.args.use_language_embedding and self.language_manager: print(" > initialization of language-embedding layers.") self.num_languages = self.language_manager.num_languages self.embedded_language_dim = self.args.embedded_language_dim self.emb_l = nn.Embedding(self.num_languages, self.embedded_language_dim) torch.nn.init.xavier_uniform_(self.emb_l.weight) else: self.embedded_language_dim = 0
[docs] def init_upsampling(self): """ Initialize upsampling modules of a model. """ if self.args.encoder_sample_rate: self.interpolate_factor = self.config.audio["sample_rate"] / self.args.encoder_sample_rate self.audio_resampler = torchaudio.transforms.Resample( orig_freq=self.config.audio["sample_rate"], new_freq=self.args.encoder_sample_rate ) # pylint: disable=W0201
[docs] def on_epoch_start(self, trainer): # pylint: disable=W0613 """Freeze layers at the beginning of an epoch""" self._freeze_layers() # set the device of speaker encoder if self.args.use_speaker_encoder_as_loss: self.speaker_manager.encoder = self.speaker_manager.encoder.to(self.device)
[docs] def on_init_end(self, trainer): # pylint: disable=W0613 """Reinit layes if needed""" if self.args.reinit_DP: before_dict = get_module_weights_sum(self.duration_predictor) # Applies weights_reset recursively to every submodule of the duration predictor self.duration_predictor.apply(fn=weights_reset) after_dict = get_module_weights_sum(self.duration_predictor) for key, value in after_dict.items(): if value == before_dict[key]: raise RuntimeError(" [!] The weights of Duration Predictor was not reinit check it !") print(" > Duration Predictor was reinit.") if self.args.reinit_text_encoder: before_dict = get_module_weights_sum(self.text_encoder) # Applies weights_reset recursively to every submodule of the duration predictor self.text_encoder.apply(fn=weights_reset) after_dict = get_module_weights_sum(self.text_encoder) for key, value in after_dict.items(): if value == before_dict[key]: raise RuntimeError(" [!] The weights of Text Encoder was not reinit check it !") print(" > Text Encoder was reinit.")
def get_aux_input(self, aux_input: Dict): sid, g, lid, _ = self._set_cond_input(aux_input) return {"speaker_ids": sid, "style_wav": None, "d_vectors": g, "language_ids": lid} def _freeze_layers(self): if self.args.freeze_encoder: for param in self.text_encoder.parameters(): param.requires_grad = False if hasattr(self, "emb_l"): for param in self.emb_l.parameters(): param.requires_grad = False if self.args.freeze_PE: for param in self.posterior_encoder.parameters(): param.requires_grad = False if self.args.freeze_DP: for param in self.duration_predictor.parameters(): param.requires_grad = False if self.args.freeze_flow_decoder: for param in self.flow.parameters(): param.requires_grad = False if self.args.freeze_waveform_decoder: for param in self.waveform_decoder.parameters(): param.requires_grad = False @staticmethod def _set_cond_input(aux_input: Dict): """Set the speaker conditioning input based on the multi-speaker mode.""" sid, g, lid, durations = None, None, None, None if "speaker_ids" in aux_input and aux_input["speaker_ids"] is not None: sid = aux_input["speaker_ids"] if sid.ndim == 0: sid = sid.unsqueeze_(0) if "d_vectors" in aux_input and aux_input["d_vectors"] is not None: g = F.normalize(aux_input["d_vectors"]).unsqueeze(-1) if g.ndim == 2: g = g.unsqueeze_(0) if "language_ids" in aux_input and aux_input["language_ids"] is not None: lid = aux_input["language_ids"] if lid.ndim == 0: lid = lid.unsqueeze_(0) if "durations" in aux_input and aux_input["durations"] is not None: durations = aux_input["durations"] return sid, g, lid, durations def _set_speaker_input(self, aux_input: Dict): d_vectors = aux_input.get("d_vectors", None) speaker_ids = aux_input.get("speaker_ids", None) if d_vectors is not None and speaker_ids is not None: raise ValueError("[!] Cannot use d-vectors and speaker-ids together.") if speaker_ids is not None and not hasattr(self, "emb_g"): raise ValueError("[!] Cannot use speaker-ids without enabling speaker embedding.") g = speaker_ids if speaker_ids is not None else d_vectors return g def forward_mas(self, outputs, z_p, m_p, logs_p, x, x_mask, y_mask, g, lang_emb): # find the alignment path attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2) with torch.no_grad(): o_scale = torch.exp(-2 * logs_p) logp1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1]).unsqueeze(-1) # [b, t, 1] logp2 = torch.einsum("klm, kln -> kmn", [o_scale, -0.5 * (z_p**2)]) logp3 = torch.einsum("klm, kln -> kmn", [m_p * o_scale, z_p]) logp4 = torch.sum(-0.5 * (m_p**2) * o_scale, [1]).unsqueeze(-1) # [b, t, 1] logp = logp2 + logp3 + logp1 + logp4 attn = maximum_path(logp, attn_mask.squeeze(1)).unsqueeze(1).detach() # [b, 1, t, t'] # duration predictor attn_durations = attn.sum(3) if self.args.use_sdp: loss_duration = self.duration_predictor( x.detach() if self.args.detach_dp_input else x, x_mask, attn_durations, g=g.detach() if self.args.detach_dp_input and g is not None else g, lang_emb=lang_emb.detach() if self.args.detach_dp_input and lang_emb is not None else lang_emb, ) loss_duration = loss_duration / torch.sum(x_mask) else: attn_log_durations = torch.log(attn_durations + 1e-6) * x_mask log_durations = self.duration_predictor( x.detach() if self.args.detach_dp_input else x, x_mask, g=g.detach() if self.args.detach_dp_input and g is not None else g, lang_emb=lang_emb.detach() if self.args.detach_dp_input and lang_emb is not None else lang_emb, ) loss_duration = torch.sum((log_durations - attn_log_durations) ** 2, [1, 2]) / torch.sum(x_mask) outputs["loss_duration"] = loss_duration return outputs, attn def upsampling_z(self, z, slice_ids=None, y_lengths=None, y_mask=None): spec_segment_size = self.spec_segment_size if self.args.encoder_sample_rate: # recompute the slices and spec_segment_size if needed slice_ids = slice_ids * int(self.interpolate_factor) if slice_ids is not None else slice_ids spec_segment_size = spec_segment_size * int(self.interpolate_factor) # interpolate z if needed if self.args.interpolate_z: z = torch.nn.functional.interpolate(z, scale_factor=[self.interpolate_factor], mode="linear").squeeze(0) # recompute the mask if needed if y_lengths is not None and y_mask is not None: y_mask = ( sequence_mask(y_lengths * self.interpolate_factor, None).to(y_mask.dtype).unsqueeze(1) ) # [B, 1, T_dec_resampled] return z, spec_segment_size, slice_ids, y_mask
[docs] def forward( # pylint: disable=dangerous-default-value self, x: torch.tensor, x_lengths: torch.tensor, y: torch.tensor, y_lengths: torch.tensor, waveform: torch.tensor, aux_input={"d_vectors": None, "speaker_ids": None, "language_ids": None}, ) -> Dict: """Forward pass of the model. Args: x (torch.tensor): Batch of input character sequence IDs. x_lengths (torch.tensor): Batch of input character sequence lengths. y (torch.tensor): Batch of input spectrograms. y_lengths (torch.tensor): Batch of input spectrogram lengths. waveform (torch.tensor): Batch of ground truth waveforms per sample. aux_input (dict, optional): Auxiliary inputs for multi-speaker and multi-lingual training. Defaults to {"d_vectors": None, "speaker_ids": None, "language_ids": None}. Returns: Dict: model outputs keyed by the output name. Shapes: - x: :math:`[B, T_seq]` - x_lengths: :math:`[B]` - y: :math:`[B, C, T_spec]` - y_lengths: :math:`[B]` - waveform: :math:`[B, 1, T_wav]` - d_vectors: :math:`[B, C, 1]` - speaker_ids: :math:`[B]` - language_ids: :math:`[B]` Return Shapes: - model_outputs: :math:`[B, 1, T_wav]` - alignments: :math:`[B, T_seq, T_dec]` - z: :math:`[B, C, T_dec]` - z_p: :math:`[B, C, T_dec]` - m_p: :math:`[B, C, T_dec]` - logs_p: :math:`[B, C, T_dec]` - m_q: :math:`[B, C, T_dec]` - logs_q: :math:`[B, C, T_dec]` - waveform_seg: :math:`[B, 1, spec_seg_size * hop_length]` - gt_spk_emb: :math:`[B, 1, speaker_encoder.proj_dim]` - syn_spk_emb: :math:`[B, 1, speaker_encoder.proj_dim]` """ outputs = {} sid, g, lid, _ = self._set_cond_input(aux_input) # speaker embedding if self.args.use_speaker_embedding and sid is not None: g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] # language embedding lang_emb = None if self.args.use_language_embedding and lid is not None: lang_emb = self.emb_l(lid).unsqueeze(-1) x, m_p, logs_p, x_mask = self.text_encoder(x, x_lengths, lang_emb=lang_emb) # posterior encoder z, m_q, logs_q, y_mask = self.posterior_encoder(y, y_lengths, g=g) # flow layers z_p = self.flow(z, y_mask, g=g) # duration predictor outputs, attn = self.forward_mas(outputs, z_p, m_p, logs_p, x, x_mask, y_mask, g=g, lang_emb=lang_emb) # expand prior m_p = torch.einsum("klmn, kjm -> kjn", [attn, m_p]) logs_p = torch.einsum("klmn, kjm -> kjn", [attn, logs_p]) # select a random feature segment for the waveform decoder z_slice, slice_ids = rand_segments(z, y_lengths, self.spec_segment_size, let_short_samples=True, pad_short=True) # interpolate z if needed z_slice, spec_segment_size, slice_ids, _ = self.upsampling_z(z_slice, slice_ids=slice_ids) o = self.waveform_decoder(z_slice, g=g) wav_seg = segment( waveform, slice_ids * self.config.audio.hop_length, spec_segment_size * self.config.audio.hop_length, pad_short=True, ) if self.args.use_speaker_encoder_as_loss and self.speaker_manager.encoder is not None: # concate generated and GT waveforms wavs_batch = torch.cat((wav_seg, o), dim=0) # resample audio to speaker encoder sample_rate # pylint: disable=W0105 if self.audio_transform is not None: wavs_batch = self.audio_transform(wavs_batch) pred_embs = self.speaker_manager.encoder.forward(wavs_batch, l2_norm=True) # split generated and GT speaker embeddings gt_spk_emb, syn_spk_emb = torch.chunk(pred_embs, 2, dim=0) else: gt_spk_emb, syn_spk_emb = None, None outputs.update( { "model_outputs": o, "alignments": attn.squeeze(1), "m_p": m_p, "logs_p": logs_p, "z": z, "z_p": z_p, "m_q": m_q, "logs_q": logs_q, "waveform_seg": wav_seg, "gt_spk_emb": gt_spk_emb, "syn_spk_emb": syn_spk_emb, "slice_ids": slice_ids, } ) return outputs
@staticmethod def _set_x_lengths(x, aux_input): if "x_lengths" in aux_input and aux_input["x_lengths"] is not None: return aux_input["x_lengths"] return torch.tensor(x.shape[1:2]).to(x.device)
[docs] @torch.no_grad() def inference( self, x, aux_input={"x_lengths": None, "d_vectors": None, "speaker_ids": None, "language_ids": None, "durations": None}, ): # pylint: disable=dangerous-default-value """ Note: To run in batch mode, provide `x_lengths` else model assumes that the batch size is 1. Shapes: - x: :math:`[B, T_seq]` - x_lengths: :math:`[B]` - d_vectors: :math:`[B, C]` - speaker_ids: :math:`[B]` Return Shapes: - model_outputs: :math:`[B, 1, T_wav]` - alignments: :math:`[B, T_seq, T_dec]` - z: :math:`[B, C, T_dec]` - z_p: :math:`[B, C, T_dec]` - m_p: :math:`[B, C, T_dec]` - logs_p: :math:`[B, C, T_dec]` """ sid, g, lid, durations = self._set_cond_input(aux_input) x_lengths = self._set_x_lengths(x, aux_input) # speaker embedding if self.args.use_speaker_embedding and sid is not None: g = self.emb_g(sid).unsqueeze(-1) # language embedding lang_emb = None if self.args.use_language_embedding and lid is not None: lang_emb = self.emb_l(lid).unsqueeze(-1) x, m_p, logs_p, x_mask = self.text_encoder(x, x_lengths, lang_emb=lang_emb) if durations is None: if self.args.use_sdp: logw = self.duration_predictor( x, x_mask, g=g if self.args.condition_dp_on_speaker else None, reverse=True, noise_scale=self.inference_noise_scale_dp, lang_emb=lang_emb, ) else: logw = self.duration_predictor( x, x_mask, g=g if self.args.condition_dp_on_speaker else None, lang_emb=lang_emb ) w = torch.exp(logw) * x_mask * self.length_scale else: assert durations.shape[-1] == x.shape[-1] w = durations.unsqueeze(0) w_ceil = torch.ceil(w) y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() y_mask = sequence_mask(y_lengths, None).to(x_mask.dtype).unsqueeze(1) # [B, 1, T_dec] attn_mask = x_mask * y_mask.transpose(1, 2) # [B, 1, T_enc] * [B, T_dec, 1] attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1).transpose(1, 2)) m_p = torch.matmul(attn.transpose(1, 2), m_p.transpose(1, 2)).transpose(1, 2) logs_p = torch.matmul(attn.transpose(1, 2), logs_p.transpose(1, 2)).transpose(1, 2) z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * self.inference_noise_scale z = self.flow(z_p, y_mask, g=g, reverse=True) # upsampling if needed z, _, _, y_mask = self.upsampling_z(z, y_lengths=y_lengths, y_mask=y_mask) o = self.waveform_decoder((z * y_mask)[:, :, : self.max_inference_len], g=g) outputs = { "model_outputs": o, "alignments": attn.squeeze(1), "durations": w_ceil, "z": z, "z_p": z_p, "m_p": m_p, "logs_p": logs_p, "y_mask": y_mask, } return outputs
[docs] @torch.no_grad() def inference_voice_conversion( self, reference_wav, speaker_id=None, d_vector=None, reference_speaker_id=None, reference_d_vector=None ): """Inference for voice conversion Args: reference_wav (Tensor): Reference wavform. Tensor of shape [B, T] speaker_id (Tensor): speaker_id of the target speaker. Tensor of shape [B] d_vector (Tensor): d_vector embedding of target speaker. Tensor of shape `[B, C]` reference_speaker_id (Tensor): speaker_id of the reference_wav speaker. Tensor of shape [B] reference_d_vector (Tensor): d_vector embedding of the reference_wav speaker. Tensor of shape `[B, C]` """ # compute spectrograms y = wav_to_spec( reference_wav, self.config.audio.fft_size, self.config.audio.hop_length, self.config.audio.win_length, center=False, ) y_lengths = torch.tensor([y.size(-1)]).to(y.device) speaker_cond_src = reference_speaker_id if reference_speaker_id is not None else reference_d_vector speaker_cond_tgt = speaker_id if speaker_id is not None else d_vector wav, _, _ = self.voice_conversion(y, y_lengths, speaker_cond_src, speaker_cond_tgt) return wav
[docs] def voice_conversion(self, y, y_lengths, speaker_cond_src, speaker_cond_tgt): """Forward pass for voice conversion TODO: create an end-point for voice conversion Args: y (Tensor): Reference spectrograms. Tensor of shape [B, T, C] y_lengths (Tensor): Length of each reference spectrogram. Tensor of shape [B] speaker_cond_src (Tensor): Reference speaker ID. Tensor of shape [B,] speaker_cond_tgt (Tensor): Target speaker ID. Tensor of shape [B,] """ assert self.num_speakers > 0, "num_speakers have to be larger than 0." # speaker embedding if self.args.use_speaker_embedding and not self.args.use_d_vector_file: g_src = self.emb_g(torch.from_numpy((np.array(speaker_cond_src))).unsqueeze(0)).unsqueeze(-1) g_tgt = self.emb_g(torch.from_numpy((np.array(speaker_cond_tgt))).unsqueeze(0)).unsqueeze(-1) elif not self.args.use_speaker_embedding and self.args.use_d_vector_file: g_src = F.normalize(speaker_cond_src).unsqueeze(-1) g_tgt = F.normalize(speaker_cond_tgt).unsqueeze(-1) else: raise RuntimeError(" [!] Voice conversion is only supported on multi-speaker models.") z, _, _, y_mask = self.posterior_encoder(y, y_lengths, g=g_src) z_p = self.flow(z, y_mask, g=g_src) z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True) o_hat = self.waveform_decoder(z_hat * y_mask, g=g_tgt) return o_hat, y_mask, (z, z_p, z_hat)
[docs] def train_step(self, batch: dict, criterion: nn.Module, optimizer_idx: int) -> Tuple[Dict, Dict]: """Perform a single training step. Run the model forward pass and compute losses. Args: batch (Dict): Input tensors. criterion (nn.Module): Loss layer designed for the model. optimizer_idx (int): Index of optimizer to use. 0 for the generator and 1 for the discriminator networks. Returns: Tuple[Dict, Dict]: Model ouputs and computed losses. """ spec_lens = batch["spec_lens"] if optimizer_idx == 0: tokens = batch["tokens"] token_lenghts = batch["token_lens"] spec = batch["spec"] d_vectors = batch["d_vectors"] speaker_ids = batch["speaker_ids"] language_ids = batch["language_ids"] waveform = batch["waveform"] # generator pass outputs = self.forward( tokens, token_lenghts, spec, spec_lens, waveform, aux_input={"d_vectors": d_vectors, "speaker_ids": speaker_ids, "language_ids": language_ids}, ) # cache tensors for the generator pass self.model_outputs_cache = outputs # pylint: disable=attribute-defined-outside-init # compute scores and features scores_disc_fake, _, scores_disc_real, _ = self.disc( outputs["model_outputs"].detach(), outputs["waveform_seg"] ) # compute loss with autocast(enabled=False): # use float32 for the criterion loss_dict = criterion[optimizer_idx]( scores_disc_real, scores_disc_fake, ) return outputs, loss_dict if optimizer_idx == 1: mel = batch["mel"] # compute melspec segment with autocast(enabled=False): if self.args.encoder_sample_rate: spec_segment_size = self.spec_segment_size * int(self.interpolate_factor) else: spec_segment_size = self.spec_segment_size mel_slice = segment( mel.float(), self.model_outputs_cache["slice_ids"], spec_segment_size, pad_short=True ) mel_slice_hat = wav_to_mel( y=self.model_outputs_cache["model_outputs"].float(), n_fft=self.config.audio.fft_size, sample_rate=self.config.audio.sample_rate, num_mels=self.config.audio.num_mels, hop_length=self.config.audio.hop_length, win_length=self.config.audio.win_length, fmin=self.config.audio.mel_fmin, fmax=self.config.audio.mel_fmax, center=False, ) # compute discriminator scores and features scores_disc_fake, feats_disc_fake, _, feats_disc_real = self.disc( self.model_outputs_cache["model_outputs"], self.model_outputs_cache["waveform_seg"] ) # compute losses with autocast(enabled=False): # use float32 for the criterion loss_dict = criterion[optimizer_idx]( mel_slice_hat=mel_slice.float(), mel_slice=mel_slice_hat.float(), z_p=self.model_outputs_cache["z_p"].float(), logs_q=self.model_outputs_cache["logs_q"].float(), m_p=self.model_outputs_cache["m_p"].float(), logs_p=self.model_outputs_cache["logs_p"].float(), z_len=spec_lens, scores_disc_fake=scores_disc_fake, feats_disc_fake=feats_disc_fake, feats_disc_real=feats_disc_real, loss_duration=self.model_outputs_cache["loss_duration"], use_speaker_encoder_as_loss=self.args.use_speaker_encoder_as_loss, gt_spk_emb=self.model_outputs_cache["gt_spk_emb"], syn_spk_emb=self.model_outputs_cache["syn_spk_emb"], ) return self.model_outputs_cache, loss_dict raise ValueError(" [!] Unexpected `optimizer_idx`.")
def _log(self, ap, batch, outputs, name_prefix="train"): # pylint: disable=unused-argument,no-self-use y_hat = outputs[1]["model_outputs"] y = outputs[1]["waveform_seg"] figures = plot_results(y_hat, y, ap, name_prefix) sample_voice = y_hat[0].squeeze(0).detach().cpu().numpy() audios = {f"{name_prefix}/audio": sample_voice} alignments = outputs[1]["alignments"] align_img = alignments[0].data.cpu().numpy().T figures.update( { "alignment": plot_alignment(align_img, output_fig=False), } ) return figures, audios
[docs] def train_log( self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int ): # pylint: disable=no-self-use """Create visualizations and waveform examples. For example, here you can plot spectrograms and generate sample sample waveforms from these spectrograms to be projected onto Tensorboard. Args: ap (AudioProcessor): audio processor used at training. batch (Dict): Model inputs used at the previous training step. outputs (Dict): Model outputs generated at the previoud training step. Returns: Tuple[Dict, np.ndarray]: training plots and output waveform. """ figures, audios = self._log(self.ap, batch, outputs, "train") logger.train_figures(steps, figures) logger.train_audios(steps, audios, self.ap.sample_rate)
@torch.no_grad() def eval_step(self, batch: dict, criterion: nn.Module, optimizer_idx: int): return self.train_step(batch, criterion, optimizer_idx) def eval_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None: figures, audios = self._log(self.ap, batch, outputs, "eval") logger.eval_figures(steps, figures) logger.eval_audios(steps, audios, self.ap.sample_rate) def get_aux_input_from_test_sentences(self, sentence_info): if hasattr(self.config, "model_args"): config = self.config.model_args else: config = self.config # extract speaker and language info text, speaker_name, style_wav, language_name = None, None, None, None if isinstance(sentence_info, list): if len(sentence_info) == 1: text = sentence_info[0] elif len(sentence_info) == 2: text, speaker_name = sentence_info elif len(sentence_info) == 3: text, speaker_name, style_wav = sentence_info elif len(sentence_info) == 4: text, speaker_name, style_wav, language_name = sentence_info else: text = sentence_info # get speaker id/d_vector speaker_id, d_vector, language_id = None, None, None if hasattr(self, "speaker_manager"): if config.use_d_vector_file: if speaker_name is None: d_vector = self.speaker_manager.get_random_embedding() else: d_vector = self.speaker_manager.get_mean_embedding(speaker_name, num_samples=None, randomize=False) elif config.use_speaker_embedding: if speaker_name is None: speaker_id = self.speaker_manager.get_random_id() else: speaker_id = self.speaker_manager.name_to_id[speaker_name] # get language id if hasattr(self, "language_manager") and config.use_language_embedding and language_name is not None: language_id = self.language_manager.name_to_id[language_name] return { "text": text, "speaker_id": speaker_id, "style_wav": style_wav, "d_vector": d_vector, "language_id": language_id, "language_name": language_name, }
[docs] @torch.no_grad() def test_run(self, assets) -> Tuple[Dict, Dict]: """Generic test run for `tts` models used by `Trainer`. You can override this for a different behaviour. Returns: Tuple[Dict, Dict]: Test figures and audios to be projected to Tensorboard. """ print(" | > Synthesizing test sentences.") test_audios = {} test_figures = {} test_sentences = self.config.test_sentences for idx, s_info in enumerate(test_sentences): aux_inputs = self.get_aux_input_from_test_sentences(s_info) wav, alignment, _, _ = synthesis( self, aux_inputs["text"], self.config, "cuda" in str(next(self.parameters()).device), speaker_id=aux_inputs["speaker_id"], d_vector=aux_inputs["d_vector"], style_wav=aux_inputs["style_wav"], language_id=aux_inputs["language_id"], use_griffin_lim=True, do_trim_silence=False, ).values() test_audios["{}-audio".format(idx)] = wav test_figures["{}-alignment".format(idx)] = plot_alignment(alignment.T, output_fig=False) return {"figures": test_figures, "audios": test_audios}
def test_log( self, outputs: dict, logger: "Logger", assets: dict, steps: int # pylint: disable=unused-argument ) -> None: logger.test_audios(steps, outputs["audios"], self.ap.sample_rate) logger.test_figures(steps, outputs["figures"])
[docs] def format_batch(self, batch: Dict) -> Dict: """Compute speaker, langugage IDs and d_vector for the batch if necessary.""" speaker_ids = None language_ids = None d_vectors = None # get numerical speaker ids from speaker names if self.speaker_manager is not None and self.speaker_manager.name_to_id and self.args.use_speaker_embedding: speaker_ids = [self.speaker_manager.name_to_id[sn] for sn in batch["speaker_names"]] if speaker_ids is not None: speaker_ids = torch.LongTensor(speaker_ids) # get d_vectors from audio file names if self.speaker_manager is not None and self.speaker_manager.embeddings and self.args.use_d_vector_file: d_vector_mapping = self.speaker_manager.embeddings d_vectors = [d_vector_mapping[w]["embedding"] for w in batch["audio_unique_names"]] d_vectors = torch.FloatTensor(d_vectors) # get language ids from language names if self.language_manager is not None and self.language_manager.name_to_id and self.args.use_language_embedding: language_ids = [self.language_manager.name_to_id[ln] for ln in batch["language_names"]] if language_ids is not None: language_ids = torch.LongTensor(language_ids) batch["language_ids"] = language_ids batch["d_vectors"] = d_vectors batch["speaker_ids"] = speaker_ids return batch
[docs] def format_batch_on_device(self, batch): """Compute spectrograms on the device.""" ac = self.config.audio if self.args.encoder_sample_rate: wav = self.audio_resampler(batch["waveform"]) else: wav = batch["waveform"] # compute spectrograms batch["spec"] = wav_to_spec(wav, ac.fft_size, ac.hop_length, ac.win_length, center=False) if self.args.encoder_sample_rate: # recompute spec with high sampling rate to the loss spec_mel = wav_to_spec(batch["waveform"], ac.fft_size, ac.hop_length, ac.win_length, center=False) # remove extra stft frames if needed if spec_mel.size(2) > int(batch["spec"].size(2) * self.interpolate_factor): spec_mel = spec_mel[:, :, : int(batch["spec"].size(2) * self.interpolate_factor)] else: batch["spec"] = batch["spec"][:, :, : int(spec_mel.size(2) / self.interpolate_factor)] else: spec_mel = batch["spec"] batch["mel"] = spec_to_mel( spec=spec_mel, n_fft=ac.fft_size, num_mels=ac.num_mels, sample_rate=ac.sample_rate, fmin=ac.mel_fmin, fmax=ac.mel_fmax, ) if self.args.encoder_sample_rate: assert batch["spec"].shape[2] == int( batch["mel"].shape[2] / self.interpolate_factor ), f"{batch['spec'].shape[2]}, {batch['mel'].shape[2]}" else: assert batch["spec"].shape[2] == batch["mel"].shape[2], f"{batch['spec'].shape[2]}, {batch['mel'].shape[2]}" # compute spectrogram frame lengths batch["spec_lens"] = (batch["spec"].shape[2] * batch["waveform_rel_lens"]).int() batch["mel_lens"] = (batch["mel"].shape[2] * batch["waveform_rel_lens"]).int() if self.args.encoder_sample_rate: assert (batch["spec_lens"] - (batch["mel_lens"] / self.interpolate_factor).int()).sum() == 0 else: assert (batch["spec_lens"] - batch["mel_lens"]).sum() == 0 # zero the padding frames batch["spec"] = batch["spec"] * sequence_mask(batch["spec_lens"]).unsqueeze(1) batch["mel"] = batch["mel"] * sequence_mask(batch["mel_lens"]).unsqueeze(1) return batch
def get_sampler(self, config: Coqpit, dataset: TTSDataset, num_gpus=1, is_eval=False): weights = None data_items = dataset.samples if getattr(config, "use_weighted_sampler", False): for attr_name, alpha in config.weighted_sampler_attrs.items(): print(f" > Using weighted sampler for attribute '{attr_name}' with alpha '{alpha}'") multi_dict = config.weighted_sampler_multipliers.get(attr_name, None) print(multi_dict) weights, attr_names, attr_weights = get_attribute_balancer_weights( attr_name=attr_name, items=data_items, multi_dict=multi_dict ) weights = weights * alpha print(f" > Attribute weights for '{attr_names}' \n | > {attr_weights}") # input_audio_lenghts = [os.path.getsize(x["audio_file"]) for x in data_items] if weights is not None: w_sampler = WeightedRandomSampler(weights, len(weights)) batch_sampler = BucketBatchSampler( w_sampler, data=data_items, batch_size=config.eval_batch_size if is_eval else config.batch_size, sort_key=lambda x: os.path.getsize(x["audio_file"]), drop_last=True, ) else: batch_sampler = None # sampler for DDP if batch_sampler is None: batch_sampler = DistributedSampler(dataset) if num_gpus > 1 else None else: # If a sampler is already defined use this sampler and DDP sampler together batch_sampler = ( DistributedSamplerWrapper(batch_sampler) if num_gpus > 1 else batch_sampler ) # TODO: check batch_sampler with multi-gpu return batch_sampler def get_data_loader( self, config: Coqpit, assets: Dict, is_eval: bool, samples: Union[List[Dict], List[List]], verbose: bool, num_gpus: int, rank: int = None, ) -> "DataLoader": if is_eval and not config.run_eval: loader = None else: # init dataloader dataset = VitsDataset( model_args=self.args, samples=samples, batch_group_size=0 if is_eval else config.batch_group_size * config.batch_size, min_text_len=config.min_text_len, max_text_len=config.max_text_len, min_audio_len=config.min_audio_len, max_audio_len=config.max_audio_len, phoneme_cache_path=config.phoneme_cache_path, precompute_num_workers=config.precompute_num_workers, verbose=verbose, tokenizer=self.tokenizer, start_by_longest=config.start_by_longest, ) # wait all the DDP process to be ready if num_gpus > 1: dist.barrier() # sort input sequences from short to long dataset.preprocess_samples() # get samplers sampler = self.get_sampler(config, dataset, num_gpus) if sampler is None: loader = DataLoader( dataset, batch_size=config.eval_batch_size if is_eval else config.batch_size, shuffle=False, # shuffle is done in the dataset. collate_fn=dataset.collate_fn, drop_last=False, # setting this False might cause issues in AMP training. num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers, pin_memory=False, ) else: if num_gpus > 1: loader = DataLoader( dataset, sampler=sampler, batch_size=config.eval_batch_size if is_eval else config.batch_size, collate_fn=dataset.collate_fn, num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers, pin_memory=False, ) else: loader = DataLoader( dataset, batch_sampler=sampler, collate_fn=dataset.collate_fn, num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers, pin_memory=False, ) return loader
[docs] def get_optimizer(self) -> List: """Initiate and return the GAN optimizers based on the config parameters. It returnes 2 optimizers in a list. First one is for the generator and the second one is for the discriminator. Returns: List: optimizers. """ # select generator parameters optimizer0 = get_optimizer(self.config.optimizer, self.config.optimizer_params, self.config.lr_disc, self.disc) gen_parameters = chain(params for k, params in self.named_parameters() if not k.startswith("disc.")) optimizer1 = get_optimizer( self.config.optimizer, self.config.optimizer_params, self.config.lr_gen, parameters=gen_parameters ) return [optimizer0, optimizer1]
[docs] def get_lr(self) -> List: """Set the initial learning rates for each optimizer. Returns: List: learning rates for each optimizer. """ return [self.config.lr_disc, self.config.lr_gen]
[docs] def get_scheduler(self, optimizer) -> List: """Set the schedulers for each optimizer. Args: optimizer (List[`torch.optim.Optimizer`]): List of optimizers. Returns: List: Schedulers, one for each optimizer. """ scheduler_D = get_scheduler(self.config.lr_scheduler_disc, self.config.lr_scheduler_disc_params, optimizer[0]) scheduler_G = get_scheduler(self.config.lr_scheduler_gen, self.config.lr_scheduler_gen_params, optimizer[1]) return [scheduler_D, scheduler_G]
[docs] def get_criterion(self): """Get criterions for each optimizer. The index in the output list matches the optimizer idx used in `train_step()`""" from TTS.tts.layers.losses import ( # pylint: disable=import-outside-toplevel VitsDiscriminatorLoss, VitsGeneratorLoss, ) return [VitsDiscriminatorLoss(self.config), VitsGeneratorLoss(self.config)]
[docs] def load_checkpoint( self, config, checkpoint_path, eval=False, strict=True, cache=False ): # pylint: disable=unused-argument, redefined-builtin """Load the model checkpoint and setup for training or inference""" state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) # compat band-aid for the pre-trained models to not use the encoder baked into the model # TODO: consider baking the speaker encoder into the model and call it from there. # as it is probably easier for model distribution. state["model"] = {k: v for k, v in state["model"].items() if "speaker_encoder" not in k} if self.args.encoder_sample_rate is not None and eval: # audio resampler is not used in inference time self.audio_resampler = None # handle fine-tuning from a checkpoint with additional speakers if hasattr(self, "emb_g") and state["model"]["emb_g.weight"].shape != self.emb_g.weight.shape: num_new_speakers = self.emb_g.weight.shape[0] - state["model"]["emb_g.weight"].shape[0] print(f" > Loading checkpoint with {num_new_speakers} additional speakers.") emb_g = state["model"]["emb_g.weight"] new_row = torch.randn(num_new_speakers, emb_g.shape[1]) emb_g = torch.cat([emb_g, new_row], axis=0) state["model"]["emb_g.weight"] = emb_g # load the model weights self.load_state_dict(state["model"], strict=strict) if eval: self.eval() assert not self.training
[docs] def load_fairseq_checkpoint( self, config, checkpoint_dir, eval=False, strict=True ): # pylint: disable=unused-argument, redefined-builtin """Load VITS checkpoints released by fairseq here: https://github.com/facebookresearch/fairseq/tree/main/examples/mms Performs some changes for compatibility. Args: config (Coqpit): 🐸TTS model config. checkpoint_dir (str): Path to the checkpoint directory. eval (bool, optional): Set to True for evaluation. Defaults to False. """ import json from TTS.tts.utils.text.cleaners import basic_cleaners self.disc = None # set paths config_file = os.path.join(checkpoint_dir, "config.json") checkpoint_file = os.path.join(checkpoint_dir, "G_100000.pth") vocab_file = os.path.join(checkpoint_dir, "vocab.txt") # set config params with open(config_file, "r", encoding="utf-8") as file: # Load the JSON data as a dictionary config_org = json.load(file) self.config.audio.sample_rate = config_org["data"]["sampling_rate"] # self.config.add_blank = config['add_blank'] # set tokenizer vocab = FairseqVocab(vocab_file) self.text_encoder.emb = nn.Embedding(vocab.num_chars, config.model_args.hidden_channels) self.tokenizer = TTSTokenizer( use_phonemes=False, text_cleaner=basic_cleaners, characters=vocab, phonemizer=None, add_blank=config_org["data"]["add_blank"], use_eos_bos=False, ) # load fairseq checkpoint new_chk = rehash_fairseq_vits_checkpoint(checkpoint_file) self.load_state_dict(new_chk, strict=strict) if eval: self.eval() assert not self.training
[docs] @staticmethod def init_from_config(config: "VitsConfig", samples: Union[List[List], List[Dict]] = None, verbose=True): """Initiate model from config Args: config (VitsConfig): Model config. samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training. Defaults to None. """ from TTS.utils.audio import AudioProcessor upsample_rate = torch.prod(torch.as_tensor(config.model_args.upsample_rates_decoder)).item() if not config.model_args.encoder_sample_rate: assert ( upsample_rate == config.audio.hop_length ), f" [!] Product of upsample rates must be equal to the hop length - {upsample_rate} vs {config.audio.hop_length}" else: encoder_to_vocoder_upsampling_factor = config.audio.sample_rate / config.model_args.encoder_sample_rate effective_hop_length = config.audio.hop_length * encoder_to_vocoder_upsampling_factor assert ( upsample_rate == effective_hop_length ), f" [!] Product of upsample rates must be equal to the hop length - {upsample_rate} vs {effective_hop_length}" ap = AudioProcessor.init_from_config(config, verbose=verbose) tokenizer, new_config = TTSTokenizer.init_from_config(config) speaker_manager = SpeakerManager.init_from_config(config, samples) language_manager = LanguageManager.init_from_config(config) if config.model_args.speaker_encoder_model_path: speaker_manager.init_encoder( config.model_args.speaker_encoder_model_path, config.model_args.speaker_encoder_config_path ) return Vits(new_config, ap, tokenizer, speaker_manager, language_manager)
[docs] def export_onnx(self, output_path: str = "coqui_vits.onnx", verbose: bool = True): """Export model to ONNX format for inference Args: output_path (str): Path to save the exported model. verbose (bool): Print verbose information. Defaults to True. """ # rollback values _forward = self.forward disc = None if hasattr(self, "disc"): disc = self.disc training = self.training # set export mode self.disc = None self.eval() def onnx_inference(text, text_lengths, scales, sid=None, langid=None): noise_scale = scales[0] length_scale = scales[1] noise_scale_dp = scales[2] self.noise_scale = noise_scale self.length_scale = length_scale self.noise_scale_dp = noise_scale_dp return self.inference( text, aux_input={ "x_lengths": text_lengths, "d_vectors": None, "speaker_ids": sid, "language_ids": langid, "durations": None, }, )["model_outputs"] self.forward = onnx_inference # set dummy inputs dummy_input_length = 100 sequences = torch.randint(low=0, high=2, size=(1, dummy_input_length), dtype=torch.long) sequence_lengths = torch.LongTensor([sequences.size(1)]) scales = torch.FloatTensor([self.inference_noise_scale, self.length_scale, self.inference_noise_scale_dp]) dummy_input = (sequences, sequence_lengths, scales) input_names = ["input", "input_lengths", "scales"] if self.num_speakers > 0: speaker_id = torch.LongTensor([0]) dummy_input += (speaker_id,) input_names.append("sid") if hasattr(self, "num_languages") and self.num_languages > 0 and self.embedded_language_dim > 0: language_id = torch.LongTensor([0]) dummy_input += (language_id,) input_names.append("langid") # export to ONNX torch.onnx.export( model=self, args=dummy_input, opset_version=15, f=output_path, verbose=verbose, input_names=input_names, output_names=["output"], dynamic_axes={ "input": {0: "batch_size", 1: "phonemes"}, "input_lengths": {0: "batch_size"}, "output": {0: "batch_size", 1: "time1", 2: "time2"}, }, ) # rollback self.forward = _forward if training: self.train() if not disc is None: self.disc = disc
def load_onnx(self, model_path: str, cuda=False): import onnxruntime as ort providers = [ "CPUExecutionProvider" if cuda is False else ("CUDAExecutionProvider", {"cudnn_conv_algo_search": "DEFAULT"}) ] sess_options = ort.SessionOptions() self.onnx_sess = ort.InferenceSession( model_path, sess_options=sess_options, providers=providers, )
[docs] def inference_onnx(self, x, x_lengths=None, speaker_id=None, language_id=None): """ONNX inference""" if isinstance(x, torch.Tensor): x = x.cpu().numpy() if x_lengths is None: x_lengths = np.array([x.shape[1]], dtype=np.int64) if isinstance(x_lengths, torch.Tensor): x_lengths = x_lengths.cpu().numpy() scales = np.array( [self.inference_noise_scale, self.length_scale, self.inference_noise_scale_dp], dtype=np.float32, ) input_params = {"input": x, "input_lengths": x_lengths, "scales": scales} if not speaker_id is None: input_params["sid"] = torch.tensor([speaker_id]).cpu().numpy() if not language_id is None: input_params["langid"] = torch.tensor([language_id]).cpu().numpy() audio = self.onnx_sess.run( ["output"], input_params, ) return audio[0][0]
################################## # VITS CHARACTERS ################################## class VitsCharacters(BaseCharacters): """Characters class for VITs model for compatibility with pre-trained models""" def __init__( self, graphemes: str = _characters, punctuations: str = _punctuations, pad: str = _pad, ipa_characters: str = _phonemes, ) -> None: if ipa_characters is not None: graphemes += ipa_characters super().__init__(graphemes, punctuations, pad, None, None, "<BLNK>", is_unique=False, is_sorted=True) def _create_vocab(self): self._vocab = [self._pad] + list(self._punctuations) + list(self._characters) + [self._blank] self._char_to_id = {char: idx for idx, char in enumerate(self.vocab)} # pylint: disable=unnecessary-comprehension self._id_to_char = {idx: char for idx, char in enumerate(self.vocab)} @staticmethod def init_from_config(config: Coqpit): if config.characters is not None: _pad = config.characters["pad"] _punctuations = config.characters["punctuations"] _letters = config.characters["characters"] _letters_ipa = config.characters["phonemes"] return ( VitsCharacters(graphemes=_letters, ipa_characters=_letters_ipa, punctuations=_punctuations, pad=_pad), config, ) characters = VitsCharacters() new_config = replace(config, characters=characters.to_config()) return characters, new_config def to_config(self) -> "CharactersConfig": return CharactersConfig( characters=self._characters, punctuations=self._punctuations, pad=self._pad, eos=None, bos=None, blank=self._blank, is_unique=False, is_sorted=True, ) class FairseqVocab(BaseVocabulary): def __init__(self, vocab: str): super(FairseqVocab).__init__() self.vocab = vocab @property def vocab(self): """Return the vocabulary dictionary.""" return self._vocab @vocab.setter def vocab(self, vocab_file): with open(vocab_file, encoding="utf-8") as f: self._vocab = [x.replace("\n", "") for x in f.readlines()] self.blank = self._vocab[0] self.pad = " " self._char_to_id = {s: i for i, s in enumerate(self._vocab)} # pylint: disable=unnecessary-comprehension self._id_to_char = {i: s for i, s in enumerate(self._vocab)} # pylint: disable=unnecessary-comprehension