Source code for TTS.tts.models.vits

import math
from dataclasses import dataclass, field
from itertools import chain
from typing import Dict, List, Tuple

import torch
from coqpit import Coqpit
from torch import nn
from torch.cuda.amp.autocast_mode import autocast

from TTS.tts.layers.glow_tts.duration_predictor import DurationPredictor
from TTS.tts.layers.vits.discriminator import VitsDiscriminator
from TTS.tts.layers.vits.networks import PosteriorEncoder, ResidualCouplingBlocks, TextEncoder
from TTS.tts.layers.vits.stochastic_duration_predictor import StochasticDurationPredictor
from TTS.tts.models.base_tts import BaseTTS
from TTS.tts.utils.helpers import generate_path, maximum_path, rand_segments, segment, sequence_mask
from TTS.tts.utils.speakers import get_speaker_manager
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.visual import plot_alignment
from import AudioProcessor
from TTS.utils.trainer_utils import get_optimizer, get_scheduler
from TTS.vocoder.models.hifigan_generator import HifiganGenerator
from TTS.vocoder.utils.generic_utils import plot_results

[docs]@dataclass class VitsArgs(Coqpit): """VITS model arguments. Args: num_chars (int): Number of characters in the vocabulary. Defaults to 100. out_channels (int): Number of output channels. Defaults to 513. spec_segment_size (int): Decoder input segment size. Defaults to 32 `(32 * hoplength = waveform length)`. hidden_channels (int): Number of hidden channels of the model. Defaults to 192. hidden_channels_ffn_text_encoder (int): Number of hidden channels of the feed-forward layers of the text encoder transformer. Defaults to 256. num_heads_text_encoder (int): Number of attention heads of the text encoder transformer. Defaults to 2. num_layers_text_encoder (int): Number of transformer layers in the text encoder. Defaults to 6. kernel_size_text_encoder (int): Kernel size of the text encoder transformer FFN layers. Defaults to 3. dropout_p_text_encoder (float): Dropout rate of the text encoder. Defaults to 0.1. dropout_p_duration_predictor (float): Dropout rate of the duration predictor. Defaults to 0.1. kernel_size_posterior_encoder (int): Kernel size of the posterior encoder's WaveNet layers. Defaults to 5. dilatation_posterior_encoder (int): Dilation rate of the posterior encoder's WaveNet layers. Defaults to 1. num_layers_posterior_encoder (int): Number of posterior encoder's WaveNet layers. Defaults to 16. kernel_size_flow (int): Kernel size of the Residual Coupling layers of the flow network. Defaults to 5. dilatation_flow (int): Dilation rate of the Residual Coupling WaveNet layers of the flow network. Defaults to 1. num_layers_flow (int): Number of Residual Coupling WaveNet layers of the flow network. Defaults to 6. resblock_type_decoder (str): Type of the residual block in the decoder network. Defaults to "1". resblock_kernel_sizes_decoder (List[int]): Kernel sizes of the residual blocks in the decoder network. Defaults to `[3, 7, 11]`. resblock_dilation_sizes_decoder (List[List[int]]): Dilation sizes of the residual blocks in the decoder network. Defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`. upsample_rates_decoder (List[int]): Upsampling rates for each concecutive upsampling layer in the decoder network. The multiply of these values must be equal to the kop length used for computing spectrograms. Defaults to `[8, 8, 2, 2]`. upsample_initial_channel_decoder (int): Number of hidden channels of the first upsampling convolution layer of the decoder network. Defaults to 512. upsample_kernel_sizes_decoder (List[int]): Kernel sizes for each upsampling layer of the decoder network. Defaults to `[16, 16, 4, 4]`. use_sdp (bool): Use Stochastic Duration Predictor. Defaults to True. noise_scale (float): Noise scale used for the sample noise tensor in training. Defaults to 1.0. inference_noise_scale (float): Noise scale used for the sample noise tensor in inference. Defaults to 0.667. length_scale (float): Scale factor for the predicted duration values. Smaller values result faster speech. Defaults to 1. noise_scale_dp (float): Noise scale used by the Stochastic Duration Predictor sample noise in training. Defaults to 1.0. inference_noise_scale_dp (float): Noise scale for the Stochastic Duration Predictor in inference. Defaults to 0.8. max_inference_len (int): Maximum inference length to limit the memory use. Defaults to None. init_discriminator (bool): Initialize the disciminator network if set True. Set False for inference. Defaults to True. use_spectral_norm_disriminator (bool): Use spectral normalization over weight norm in the discriminator. Defaults to False. use_speaker_embedding (bool): Enable/Disable speaker embedding for multi-speaker models. Defaults to False. num_speakers (int): Number of speakers for the speaker embedding layer. Defaults to 0. speakers_file (str): Path to the speaker mapping file for the Speaker Manager. Defaults to None. speaker_embedding_channels (int): Number of speaker embedding channels. Defaults to 256. use_d_vector_file (bool): Enable/Disable the use of d-vectors for multi-speaker training. Defaults to False. d_vector_dim (int): Number of d-vector channels. Defaults to 0. detach_dp_input (bool): Detach duration predictor's input from the network for stopping the gradients. Defaults to True. """ num_chars: int = 100 out_channels: int = 513 spec_segment_size: int = 32 hidden_channels: int = 192 hidden_channels_ffn_text_encoder: int = 768 num_heads_text_encoder: int = 2 num_layers_text_encoder: int = 6 kernel_size_text_encoder: int = 3 dropout_p_text_encoder: float = 0.1 dropout_p_duration_predictor: float = 0.5 kernel_size_posterior_encoder: int = 5 dilation_rate_posterior_encoder: int = 1 num_layers_posterior_encoder: int = 16 kernel_size_flow: int = 5 dilation_rate_flow: int = 1 num_layers_flow: int = 4 resblock_type_decoder: str = "1" resblock_kernel_sizes_decoder: List[int] = field(default_factory=lambda: [3, 7, 11]) resblock_dilation_sizes_decoder: List[List[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]) upsample_rates_decoder: List[int] = field(default_factory=lambda: [8, 8, 2, 2]) upsample_initial_channel_decoder: int = 512 upsample_kernel_sizes_decoder: List[int] = field(default_factory=lambda: [16, 16, 4, 4]) use_sdp: bool = True noise_scale: float = 1.0 inference_noise_scale: float = 0.667 length_scale: float = 1 noise_scale_dp: float = 1.0 inference_noise_scale_dp: float = 1.0 max_inference_len: int = None init_discriminator: bool = True use_spectral_norm_disriminator: bool = False use_speaker_embedding: bool = False num_speakers: int = 0 speakers_file: str = None speaker_embedding_channels: int = 256 use_d_vector_file: bool = False d_vector_dim: int = 0 detach_dp_input: bool = True
[docs]class Vits(BaseTTS): """VITS TTS model Paper:: Paper Abstract:: Several recent end-to-end text-to-speech (TTS) models enabling single-stage training and parallel sampling have been proposed, but their sample quality does not match that of two-stage TTS systems. In this work, we present a parallel endto-end TTS method that generates more natural sounding audio than current two-stage models. Our method adopts variational inference augmented with normalizing flows and an adversarial training process, which improves the expressive power of generative modeling. We also propose a stochastic duration predictor to synthesize speech with diverse rhythms from input text. With the uncertainty modeling over latent variables and the stochastic duration predictor, our method expresses the natural one-to-many relationship in which a text input can be spoken in multiple ways with different pitches and rhythms. A subjective human evaluation (mean opinion score, or MOS) on the LJ Speech, a single speaker dataset, shows that our method outperforms the best publicly available TTS systems and achieves a MOS comparable to ground truth. Check :class:`TTS.tts.configs.vits_config.VitsConfig` for class arguments. Examples: >>> from TTS.tts.configs import VitsConfig >>> from TTS.tts.models.vits import Vits >>> config = VitsConfig() >>> model = Vits(config) """ # pylint: disable=dangerous-default-value def __init__(self, config: Coqpit): super().__init__() self.END2END = True if config.__class__.__name__ == "VitsConfig": # loading from VitsConfig if "num_chars" not in config: _, self.config, num_chars = self.get_characters(config) config.model_args.num_chars = num_chars else: self.config = config config.model_args.num_chars = config.num_chars args = self.config.model_args elif isinstance(config, VitsArgs): # loading from VitsArgs self.config = config args = config else: raise ValueError("config must be either a VitsConfig or VitsArgs") self.args = args self.init_multispeaker(config) self.length_scale = args.length_scale self.noise_scale = args.noise_scale self.inference_noise_scale = args.inference_noise_scale self.inference_noise_scale_dp = args.inference_noise_scale_dp self.noise_scale_dp = args.noise_scale_dp self.max_inference_len = args.max_inference_len self.spec_segment_size = args.spec_segment_size self.text_encoder = TextEncoder( args.num_chars, args.hidden_channels, args.hidden_channels, args.hidden_channels_ffn_text_encoder, args.num_heads_text_encoder, args.num_layers_text_encoder, args.kernel_size_text_encoder, args.dropout_p_text_encoder, ) self.posterior_encoder = PosteriorEncoder( args.out_channels, args.hidden_channels, args.hidden_channels, kernel_size=args.kernel_size_posterior_encoder, dilation_rate=args.dilation_rate_posterior_encoder, num_layers=args.num_layers_posterior_encoder, cond_channels=self.embedded_speaker_dim, ) self.flow = ResidualCouplingBlocks( args.hidden_channels, args.hidden_channels, kernel_size=args.kernel_size_flow, dilation_rate=args.dilation_rate_flow, num_layers=args.num_layers_flow, cond_channels=self.embedded_speaker_dim, ) if args.use_sdp: self.duration_predictor = StochasticDurationPredictor( args.hidden_channels, 192, 3, args.dropout_p_duration_predictor, 4, cond_channels=self.embedded_speaker_dim, ) else: self.duration_predictor = DurationPredictor( args.hidden_channels, 256, 3, args.dropout_p_duration_predictor, cond_channels=self.embedded_speaker_dim ) self.waveform_decoder = HifiganGenerator( args.hidden_channels, 1, args.resblock_type_decoder, args.resblock_dilation_sizes_decoder, args.resblock_kernel_sizes_decoder, args.upsample_kernel_sizes_decoder, args.upsample_initial_channel_decoder, args.upsample_rates_decoder, inference_padding=0, cond_channels=self.embedded_speaker_dim, conv_pre_weight_norm=False, conv_post_weight_norm=False, conv_post_bias=False, ) if args.init_discriminator: self.disc = VitsDiscriminator(use_spectral_norm=args.use_spectral_norm_disriminator)
[docs] def init_multispeaker(self, config: Coqpit, data: List = None): """Initialize multi-speaker modules of a model. A model can be trained either with a speaker embedding layer or with external `d_vectors` computed from a speaker encoder model. If you need a different behaviour, override this function for your model. Args: config (Coqpit): Model configuration. data (List, optional): Dataset items to infer number of speakers. Defaults to None. """ if hasattr(config, "model_args"): config = config.model_args self.embedded_speaker_dim = 0 # init speaker manager self.speaker_manager = get_speaker_manager(config, data=data) if config.num_speakers > 0 and self.speaker_manager.num_speakers == 0: self.speaker_manager.num_speakers = config.num_speakers self.num_speakers = self.speaker_manager.num_speakers # init speaker embedding layer if config.use_speaker_embedding and not config.use_d_vector_file: self.embedded_speaker_dim = config.speaker_embedding_channels self.emb_g = nn.Embedding(config.num_speakers, config.speaker_embedding_channels) # init d-vector usage if config.use_d_vector_file: self.embedded_speaker_dim = config.d_vector_dim
@staticmethod def _set_cond_input(aux_input: Dict): """Set the speaker conditioning input based on the multi-speaker mode.""" sid, g = None, None if "speaker_ids" in aux_input and aux_input["speaker_ids"] is not None: sid = aux_input["speaker_ids"] if sid.ndim == 0: sid = sid.unsqueeze_(0) if "d_vectors" in aux_input and aux_input["d_vectors"] is not None: g = aux_input["d_vectors"] return sid, g
[docs] def forward( self, x: torch.tensor, x_lengths: torch.tensor, y: torch.tensor, y_lengths: torch.tensor, aux_input={"d_vectors": None, "speaker_ids": None}, ) -> Dict: """Forward pass of the model. Args: x (torch.tensor): Batch of input character sequence IDs. x_lengths (torch.tensor): Batch of input character sequence lengths. y (torch.tensor): Batch of input spectrograms. y_lengths (torch.tensor): Batch of input spectrogram lengths. aux_input (dict, optional): Auxiliary inputs for multi-speaker training. Defaults to {"d_vectors": None, "speaker_ids": None}. Returns: Dict: model outputs keyed by the output name. Shapes: - x: :math:`[B, T_seq]` - x_lengths: :math:`[B]` - y: :math:`[B, C, T_spec]` - y_lengths: :math:`[B]` - d_vectors: :math:`[B, C, 1]` - speaker_ids: :math:`[B]` """ outputs = {} sid, g = self._set_cond_input(aux_input) x, m_p, logs_p, x_mask = self.text_encoder(x, x_lengths) # speaker embedding if self.num_speakers > 1 and sid is not None: g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] # posterior encoder z, m_q, logs_q, y_mask = self.posterior_encoder(y, y_lengths, g=g) # flow layers z_p = self.flow(z, y_mask, g=g) # find the alignment path attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2) with torch.no_grad(): o_scale = torch.exp(-2 * logs_p) logp1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1]).unsqueeze(-1) # [b, t, 1] logp2 = torch.einsum("klm, kln -> kmn", [o_scale, -0.5 * (z_p ** 2)]) logp3 = torch.einsum("klm, kln -> kmn", [m_p * o_scale, z_p]) logp4 = torch.sum(-0.5 * (m_p ** 2) * o_scale, [1]).unsqueeze(-1) # [b, t, 1] logp = logp2 + logp3 + logp1 + logp4 attn = maximum_path(logp, attn_mask.squeeze(1)).unsqueeze(1).detach() # duration predictor attn_durations = attn.sum(3) if self.args.use_sdp: loss_duration = self.duration_predictor( x.detach() if self.args.detach_dp_input else x, x_mask, attn_durations, g=g.detach() if self.args.detach_dp_input and g is not None else g, ) loss_duration = loss_duration / torch.sum(x_mask) else: attn_log_durations = torch.log(attn_durations + 1e-6) * x_mask log_durations = self.duration_predictor( x.detach() if self.args.detach_dp_input else x, x_mask, g=g.detach() if self.args.detach_dp_input and g is not None else g, ) loss_duration = torch.sum((log_durations - attn_log_durations) ** 2, [1, 2]) / torch.sum(x_mask) outputs["loss_duration"] = loss_duration # expand prior m_p = torch.einsum("klmn, kjm -> kjn", [attn, m_p]) logs_p = torch.einsum("klmn, kjm -> kjn", [attn, logs_p]) # select a random feature segment for the waveform decoder z_slice, slice_ids = rand_segments(z, y_lengths, self.spec_segment_size) o = self.waveform_decoder(z_slice, g=g) outputs.update( { "model_outputs": o, "alignments": attn.squeeze(1), "slice_ids": slice_ids, "z": z, "z_p": z_p, "m_p": m_p, "logs_p": logs_p, "m_q": m_q, "logs_q": logs_q, } ) return outputs
[docs] def inference(self, x, aux_input={"d_vectors": None, "speaker_ids": None}): """ Shapes: - x: :math:`[B, T_seq]` - d_vectors: :math:`[B, C, 1]` - speaker_ids: :math:`[B]` """ sid, g = self._set_cond_input(aux_input) x_lengths = torch.tensor(x.shape[1:2]).to(x.device) x, m_p, logs_p, x_mask = self.text_encoder(x, x_lengths) if self.num_speakers > 0 and sid: g = self.emb_g(sid).unsqueeze(-1) if self.args.use_sdp: logw = self.duration_predictor(x, x_mask, g=g, reverse=True, noise_scale=self.inference_noise_scale_dp) else: logw = self.duration_predictor(x, x_mask, g=g) w = torch.exp(logw) * x_mask * self.length_scale w_ceil = torch.ceil(w) y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() y_mask = sequence_mask(y_lengths, None).to(x_mask.dtype) attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1).transpose(1, 2)) m_p = torch.matmul(attn.transpose(1, 2), m_p.transpose(1, 2)).transpose(1, 2) logs_p = torch.matmul(attn.transpose(1, 2), logs_p.transpose(1, 2)).transpose(1, 2) z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * self.inference_noise_scale z = self.flow(z_p, y_mask, g=g, reverse=True) o = self.waveform_decoder((z * y_mask)[:, :, : self.max_inference_len], g=g) outputs = {"model_outputs": o, "alignments": attn.squeeze(1), "z": z, "z_p": z_p, "m_p": m_p, "logs_p": logs_p} return outputs
[docs] def voice_conversion(self, y, y_lengths, sid_src, sid_tgt): """TODO: create an end-point for voice conversion""" assert self.num_speakers > 0, "num_speakers have to be larger than 0." g_src = self.emb_g(sid_src).unsqueeze(-1) g_tgt = self.emb_g(sid_tgt).unsqueeze(-1) z, _, _, y_mask = self.enc_q(y, y_lengths, g=g_src) z_p = self.flow(z, y_mask, g=g_src) z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True) o_hat = self.waveform_decoder(z_hat * y_mask, g=g_tgt) return o_hat, y_mask, (z, z_p, z_hat)
[docs] def train_step(self, batch: dict, criterion: nn.Module, optimizer_idx: int) -> Tuple[Dict, Dict]: """Perform a single training step. Run the model forward pass and compute losses. Args: batch (Dict): Input tensors. criterion (nn.Module): Loss layer designed for the model. optimizer_idx (int): Index of optimizer to use. 0 for the generator and 1 for the discriminator networks. Returns: Tuple[Dict, Dict]: Model ouputs and computed losses. """ # pylint: disable=attribute-defined-outside-init if optimizer_idx not in [0, 1]: raise ValueError(" [!] Unexpected `optimizer_idx`.") if optimizer_idx == 0: text_input = batch["text_input"] text_lengths = batch["text_lengths"] mel_lengths = batch["mel_lengths"] linear_input = batch["linear_input"] d_vectors = batch["d_vectors"] speaker_ids = batch["speaker_ids"] waveform = batch["waveform"] # generator pass outputs = self.forward( text_input, text_lengths, linear_input.transpose(1, 2), mel_lengths, aux_input={"d_vectors": d_vectors, "speaker_ids": speaker_ids}, ) # cache tensors for the discriminator self.y_disc_cache = None self.wav_seg_disc_cache = None self.y_disc_cache = outputs["model_outputs"] wav_seg = segment( waveform.transpose(1, 2), outputs["slice_ids"] *, self.args.spec_segment_size *, ) self.wav_seg_disc_cache = wav_seg outputs["waveform_seg"] = wav_seg # compute discriminator scores and features outputs["scores_disc_fake"], outputs["feats_disc_fake"], _, outputs["feats_disc_real"] = self.disc( outputs["model_outputs"], wav_seg ) # compute losses with autocast(enabled=False): # use float32 for the criterion loss_dict = criterion[optimizer_idx]( waveform_hat=outputs["model_outputs"].float(), waveform=wav_seg.float(), z_p=outputs["z_p"].float(), logs_q=outputs["logs_q"].float(), m_p=outputs["m_p"].float(), logs_p=outputs["logs_p"].float(), z_len=mel_lengths, scores_disc_fake=outputs["scores_disc_fake"], feats_disc_fake=outputs["feats_disc_fake"], feats_disc_real=outputs["feats_disc_real"], loss_duration=outputs["loss_duration"], ) elif optimizer_idx == 1: # discriminator pass outputs = {} # compute scores and features outputs["scores_disc_fake"], _, outputs["scores_disc_real"], _ = self.disc( self.y_disc_cache.detach(), self.wav_seg_disc_cache ) # compute loss with autocast(enabled=False): # use float32 for the criterion loss_dict = criterion[optimizer_idx]( outputs["scores_disc_real"], outputs["scores_disc_fake"], ) return outputs, loss_dict
[docs] def train_log( self, ap: AudioProcessor, batch: Dict, outputs: List, name_prefix="train" ): # pylint: disable=no-self-use """Create visualizations and waveform examples. For example, here you can plot spectrograms and generate sample sample waveforms from these spectrograms to be projected onto Tensorboard. Args: ap (AudioProcessor): audio processor used at training. batch (Dict): Model inputs used at the previous training step. outputs (Dict): Model outputs generated at the previoud training step. Returns: Tuple[Dict, np.ndarray]: training plots and output waveform. """ y_hat = outputs[0]["model_outputs"] y = outputs[0]["waveform_seg"] figures = plot_results(y_hat, y, ap, name_prefix) sample_voice = y_hat[0].squeeze(0).detach().cpu().numpy() audios = {f"{name_prefix}/audio": sample_voice} alignments = outputs[0]["alignments"] align_img = alignments[0].data.cpu().numpy().T figures.update( { "alignment": plot_alignment(align_img, output_fig=False), } ) return figures, audios
@torch.no_grad() def eval_step(self, batch: dict, criterion: nn.Module, optimizer_idx: int): return self.train_step(batch, criterion, optimizer_idx) def eval_log(self, ap: AudioProcessor, batch: dict, outputs: dict): return self.train_log(ap, batch, outputs, "eval")
[docs] @torch.no_grad() def test_run(self, ap) -> Tuple[Dict, Dict]: """Generic test run for `tts` models used by `Trainer`. You can override this for a different behaviour. Returns: Tuple[Dict, Dict]: Test figures and audios to be projected to Tensorboard. """ print(" | > Synthesizing test sentences.") test_audios = {} test_figures = {} test_sentences = self.config.test_sentences aux_inputs = self.get_aux_input() for idx, sen in enumerate(test_sentences): wav, alignment, _, _ = synthesis( self, sen, self.config, "cuda" in str(next(self.parameters()).device), ap, speaker_id=aux_inputs["speaker_id"], d_vector=aux_inputs["d_vector"], style_wav=aux_inputs["style_wav"], enable_eos_bos_chars=self.config.enable_eos_bos_chars, use_griffin_lim=True, do_trim_silence=False, ).values() test_audios["{}-audio".format(idx)] = wav test_figures["{}-alignment".format(idx)] = plot_alignment(alignment.T, output_fig=False) return test_figures, test_audios
[docs] def get_optimizer(self) -> List: """Initiate and return the GAN optimizers based on the config parameters. It returnes 2 optimizers in a list. First one is for the generator and the second one is for the discriminator. Returns: List: optimizers. """ gen_parameters = chain( self.text_encoder.parameters(), self.posterior_encoder.parameters(), self.flow.parameters(), self.duration_predictor.parameters(), self.waveform_decoder.parameters(), ) # add the speaker embedding layer if hasattr(self, "emb_g"): gen_parameters = chain(gen_parameters, self.emb_g) optimizer0 = get_optimizer( self.config.optimizer, self.config.optimizer_params, self.config.lr_gen, parameters=gen_parameters ) optimizer1 = get_optimizer(self.config.optimizer, self.config.optimizer_params, self.config.lr_disc, self.disc) return [optimizer0, optimizer1]
[docs] def get_lr(self) -> List: """Set the initial learning rates for each optimizer. Returns: List: learning rates for each optimizer. """ return [self.config.lr_gen, self.config.lr_disc]
[docs] def get_scheduler(self, optimizer) -> List: """Set the schedulers for each optimizer. Args: optimizer (List[`torch.optim.Optimizer`]): List of optimizers. Returns: List: Schedulers, one for each optimizer. """ scheduler0 = get_scheduler(self.config.lr_scheduler_gen, self.config.lr_scheduler_gen_params, optimizer[0]) scheduler1 = get_scheduler(self.config.lr_scheduler_disc, self.config.lr_scheduler_disc_params, optimizer[1]) return [scheduler0, scheduler1]
[docs] def get_criterion(self): """Get criterions for each optimizer. The index in the output list matches the optimizer idx used in `train_step()`""" from TTS.tts.layers.losses import ( # pylint: disable=import-outside-toplevel VitsDiscriminatorLoss, VitsGeneratorLoss, ) return [VitsGeneratorLoss(self.config), VitsDiscriminatorLoss(self.config)]
[docs] @staticmethod def make_symbols(config): """Create a custom arrangement of symbols used by the model. The output list of symbols propagate along the whole training and inference steps.""" _pad = config.characters["pad"] _punctuations = config.characters["punctuations"] _letters = config.characters["characters"] _letters_ipa = config.characters["phonemes"] symbols = [_pad] + list(_punctuations) + list(_letters) if config.use_phonemes: symbols += list(_letters_ipa) return symbols
@staticmethod def get_characters(config: Coqpit): if config.characters is not None: symbols = Vits.make_symbols(config) else: from TTS.tts.utils.text.symbols import ( # pylint: disable=import-outside-toplevel parse_symbols, phonemes, symbols, ) config.characters = parse_symbols() if config.use_phonemes: symbols = phonemes num_chars = len(symbols) + getattr(config, "add_blank", False) return symbols, config, num_chars
[docs] def load_checkpoint( self, config, checkpoint_path, eval=False ): # pylint: disable=unused-argument, redefined-builtin """Load the model checkpoint and setup for training or inference""" state = torch.load(checkpoint_path, map_location=torch.device("cpu")) self.load_state_dict(state["model"]) if eval: self.eval() assert not